165 lines
5.5 KiB
Python
165 lines
5.5 KiB
Python
|
# -*- coding: utf-8 -*-
|
|||
|
# @Author : relakkes@gmail.com
|
|||
|
# @Time : 2023/12/2 12:55
|
|||
|
# @Desc : 滑块相关的工具包
|
|||
|
import os
|
|||
|
from typing import List
|
|||
|
from urllib.parse import urlparse
|
|||
|
|
|||
|
import cv2
|
|||
|
import httpx
|
|||
|
import numpy as np
|
|||
|
|
|||
|
|
|||
|
class Slide:
|
|||
|
"""
|
|||
|
copy from https://blog.csdn.net/weixin_43582101 thanks for author
|
|||
|
update: relakkes
|
|||
|
"""
|
|||
|
def __init__(self, gap, bg, gap_size=None, bg_size=None, out=None):
|
|||
|
"""
|
|||
|
:param gap: 缺口图片链接或者url
|
|||
|
:param bg: 带缺口的图片链接或者url
|
|||
|
"""
|
|||
|
self.img_dir = os.path.join(os.getcwd(), 'temp_image')
|
|||
|
if not os.path.exists(self.img_dir):
|
|||
|
os.makedirs(self.img_dir)
|
|||
|
|
|||
|
bg_resize = bg_size if bg_size else (340, 212)
|
|||
|
gap_size = gap_size if gap_size else (68, 68)
|
|||
|
self.bg = self.check_is_img_path(bg, 'bg', resize=bg_resize)
|
|||
|
self.gap = self.check_is_img_path(gap, 'gap', resize=gap_size)
|
|||
|
self.out = out if out else os.path.join(self.img_dir, 'out.jpg')
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def check_is_img_path(img, img_type, resize):
|
|||
|
if img.startswith('http'):
|
|||
|
headers = {
|
|||
|
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;"
|
|||
|
"q=0.8,application/signed-exchange;v=b3;q=0.9",
|
|||
|
"Accept-Encoding": "gzip, deflate, br",
|
|||
|
"Accept-Language": "zh-CN,zh;q=0.9,en-GB;q=0.8,en;q=0.7,ja;q=0.6",
|
|||
|
"AbstractCache-Control": "max-age=0",
|
|||
|
"Connection": "keep-alive",
|
|||
|
"Host": urlparse(img).hostname,
|
|||
|
"Upgrade-Insecure-Requests": "1",
|
|||
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
|
|||
|
"Chrome/91.0.4472.164 Safari/537.36",
|
|||
|
}
|
|||
|
img_res = httpx.get(img, headers=headers)
|
|||
|
if img_res.status_code == 200:
|
|||
|
img_path = f'./temp_image/{img_type}.jpg'
|
|||
|
image = np.asarray(bytearray(img_res.content), dtype="uint8")
|
|||
|
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
|
|||
|
if resize:
|
|||
|
image = cv2.resize(image, dsize=resize)
|
|||
|
cv2.imwrite(img_path, image)
|
|||
|
return img_path
|
|||
|
else:
|
|||
|
raise Exception(f"保存{img_type}图片失败")
|
|||
|
else:
|
|||
|
return img
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def clear_white(img):
|
|||
|
"""清除图片的空白区域,这里主要清除滑块的空白"""
|
|||
|
img = cv2.imread(img)
|
|||
|
rows, cols, channel = img.shape
|
|||
|
min_x = 255
|
|||
|
min_y = 255
|
|||
|
max_x = 0
|
|||
|
max_y = 0
|
|||
|
for x in range(1, rows):
|
|||
|
for y in range(1, cols):
|
|||
|
t = set(img[x, y])
|
|||
|
if len(t) >= 2:
|
|||
|
if x <= min_x:
|
|||
|
min_x = x
|
|||
|
elif x >= max_x:
|
|||
|
max_x = x
|
|||
|
|
|||
|
if y <= min_y:
|
|||
|
min_y = y
|
|||
|
elif y >= max_y:
|
|||
|
max_y = y
|
|||
|
img1 = img[min_x:max_x, min_y: max_y]
|
|||
|
return img1
|
|||
|
|
|||
|
def template_match(self, tpl, target):
|
|||
|
th, tw = tpl.shape[:2]
|
|||
|
result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED)
|
|||
|
# 寻找矩阵(一维数组当作向量,用Mat定义) 中最小值和最大值的位置
|
|||
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
|
|||
|
tl = max_loc
|
|||
|
br = (tl[0] + tw, tl[1] + th)
|
|||
|
# 绘制矩形边框,将匹配区域标注出来
|
|||
|
# target:目标图像
|
|||
|
# tl:矩形定点
|
|||
|
# br:矩形的宽高
|
|||
|
# (0,0,255):矩形边框颜色
|
|||
|
# 1:矩形边框大小
|
|||
|
cv2.rectangle(target, tl, br, (0, 0, 255), 2)
|
|||
|
cv2.imwrite(self.out, target)
|
|||
|
return tl[0]
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def image_edge_detection(img):
|
|||
|
edges = cv2.Canny(img, 100, 200)
|
|||
|
return edges
|
|||
|
|
|||
|
def discern(self):
|
|||
|
img1 = self.clear_white(self.gap)
|
|||
|
img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
|
|||
|
slide = self.image_edge_detection(img1)
|
|||
|
|
|||
|
back = cv2.imread(self.bg, cv2.COLOR_RGB2GRAY)
|
|||
|
back = self.image_edge_detection(back)
|
|||
|
|
|||
|
slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB)
|
|||
|
back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB)
|
|||
|
x = self.template_match(slide_pic, back_pic)
|
|||
|
# 输出横坐标, 即 滑块在图片上的位置
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def get_track_simple(distance) -> List[int]:
|
|||
|
# 有的检测移动速度的 如果匀速移动会被识别出来,来个简单点的 渐进
|
|||
|
# distance为传入的总距离
|
|||
|
# 移动轨迹
|
|||
|
track: List[int] = []
|
|||
|
# 当前位移
|
|||
|
current = 0
|
|||
|
# 减速阈值
|
|||
|
mid = distance * 4 / 5
|
|||
|
# 计算间隔
|
|||
|
t = 0.2
|
|||
|
# 初速度
|
|||
|
v = 1
|
|||
|
|
|||
|
while current < distance:
|
|||
|
if current < mid:
|
|||
|
# 加速度为2
|
|||
|
a = 4
|
|||
|
else:
|
|||
|
# 加速度为-2
|
|||
|
a = -3
|
|||
|
v0 = v
|
|||
|
# 当前速度
|
|||
|
v = v0 + a * t # type: ignore
|
|||
|
# 移动距离
|
|||
|
move = v0 * t + 1 / 2 * a * t * t
|
|||
|
# 当前位移
|
|||
|
current += move # type: ignore
|
|||
|
# 加入轨迹
|
|||
|
track.append(round(move))
|
|||
|
return track
|
|||
|
|
|||
|
|
|||
|
def get_tracks(distance: int, level: str = "easy") -> List[int]:
|
|||
|
if level == "easy":
|
|||
|
return get_track_simple(distance)
|
|||
|
else:
|
|||
|
from . import easing
|
|||
|
_, tricks = easing.get_tracks(distance, seconds=2, ease_func="ease_out_expo")
|
|||
|
return tricks
|