72 lines
2.6 KiB
Matlab
72 lines
2.6 KiB
Matlab
clc
|
||
%================================================
|
||
%已知抽样值以△为单位
|
||
%================================================
|
||
x = 2047 %抽样值/量化单位△
|
||
pcmcode = pcmEnCode(x) %调用pcmCode()函数实现PCM编码
|
||
amp = pcmDeCode(pcmcode) %调用pcmDecode()函数实现PCM译码
|
||
amp = pcmDecode(pcmcode)
|
||
%qerror = x-amp %求量化误差
|
||
%================================================
|
||
%已知抽样值为实际电压值,则需先转换为以△为单位
|
||
%================================================
|
||
% M = 5; %设置量化范围 -5~+5
|
||
% delta = M/2^11; %求量化单位△
|
||
% y = +2.5 %设置抽样值/V
|
||
% y0 = round(y/delta) %将抽样值转换为以△为单位
|
||
% pcmcode = pcmCode(y0) %PCM编码
|
||
% amp=pcmDecode(pcmcode); %PCM译码
|
||
% amp = amp*delta %转换为实际电压值
|
||
% qerror=y-amp %求量化误差
|
||
|
||
|
||
function pcmcode = pcmEnCode(s)
|
||
start_t=[0,2.^(4:11)];
|
||
width_t=[1,1,2,4,8,16,32,64];
|
||
pcm=0;
|
||
if s>0
|
||
pcm=pcm+bitshift(1,7);
|
||
else
|
||
s=abs(s)
|
||
end
|
||
for i = 0:7
|
||
if s < start_t(i+2)
|
||
pcm=pcm+bitshift(i,4);
|
||
pcm=pcm+floor((s-start_t(i+1))/width_t(i+1));
|
||
break
|
||
end
|
||
end
|
||
pcmcode=dec2bin(pcm,8);
|
||
end
|
||
|
||
function amp = pcmDeCode(pcmcode)
|
||
start_t=[0,2.^(4:11)];
|
||
width_t=[1,1,2,4,8,16,32,64];
|
||
code=bin2dec(pcmcode);
|
||
isNeg=0;
|
||
if code < 128
|
||
isNeg=1;
|
||
k=bitshift(bitand(code,0b01111111),-4);
|
||
amp=start_t(k+1) ...
|
||
+ double(mod(bitand(code,0b01111111),16)) ...
|
||
* width_t(k+1);
|
||
if isNeg=1 amp=-amp;end
|
||
end
|
||
|
||
%PCM译码函数
|
||
function amp = pcmDecode(pcmcode)
|
||
code_table=[0,2.^(4:11)]; %段落起始电平表
|
||
delta=[1,1,2,4,8,16,32,64]; %段内量化间隔表
|
||
codeDec=bin2dec(pcmcode); %二进制编码字符串转换为十进制数值
|
||
ucode=bitand(codeDec,0b01111111); %屏蔽极性位
|
||
k=bitshift(ucode,-4); %右移4位,提取段落码
|
||
x0=code_table(k+1); %查表求段落起始电平
|
||
m=bitand(ucode,0b00001111); %提取段内码
|
||
x1=double(m)*delta(k+1); %求段内量化电平
|
||
dV=x0+x1+delta(k+1)/2; %译码输出电平
|
||
if codeDec<=128 %处理极性
|
||
amp=-dV;
|
||
else
|
||
amp=dV;
|
||
end
|
||
end
|